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Dedicated to S. S. Chern on his 60th birthday

1. Introduction

In 1939 Hermann Weyl [1] derived a formula for the volume of the tube
of radius p about a compact manifold (without boundary) imbedded in a
Euclidean space. The expression for this volume, for a manifold X of dimen-
sion k imbedded in a Euclidean n-space E™ is a polynomial V(T{(X)) in p,
valid for small p, when no self-intersections in the normal bundle occur. The
coefficients of this polynomial are integrals over X of invariant polynomial
functions of the Riemann-Chistoffel curvature tensor. The polynomial expres-
sion for the volume is of the form

(1.1) V(TP(X) = I YakepteXp™ 570,

where the summation extends over all even values of e such that 0 < e < k.
The p,(X) are the integral invariants referred to, while the 7, .. depend only
on their subscripts and not on more subtle geometric properties of X. Thus 7
and g are uniquely determined up to a factor which depends on & and e. In
what follows we add a superscript (1) to # when quoting others.

In 1966 S. S. Chern [2] studied the same #’s from the point of view of the
kinematic formula. Let M? and M? be compact manifolds of dimensions p and
g imbedded in E*, and let g be an element of the group of isometries in E™.
Then, for almost all g, M? 1 gM? is again a manifold, and the x(M? N gM%)
are meaningful quantities. The kinematic formula of Chern deals with the integral

j uP(M? N gM9dPg, where the integration extends over the group of iso-

metries, and dg is the Haar measure on this group, i.e., the product of the
measure on E™ and that on the orthogonal group in » dimensions, the latter
being a product of measures on spheres. This integral, according to Chern’s
theorem, is expressible as follows:
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1.2) fyé“(Mp N gMDdVYg = 3 ¢ 4 npatd”(MP)pP (M) .

T+j=¢
t,J even

Again, the ¢’s depend only on their subscripts and some normalization. Some
of the hardest work in Chern’s paper is devoted to a detailed calculation from
which the ¢’s can be determined.

The author’s interest in Chern’s work was stimulated by the fact that the
right side of (1.2) depends bilinearly on the p"(M?) and x*(M?), and (at least
to him) the suggestion of an underlying algebra with the ¢’s as structure con-
stants was inevitable. Simple formal properties of the integral in (1.2) support
this initial impression: the interchange of p and g in (1.2) does not change the
value (a simple change of variable in the integral shows this), so the “algebra”
is commutative. Similarly, a formal manipulation of (1.2) shows that the
“algebra” is associative.

A first step toward finding this “algebra” was a retracing of the ¢’s; a
second step a re-normalization of the g’s which would give the ¢’s in (1.2) a
simple form: we find the value 1 works.

The main result of this paper may be stated as follows:

Theorem L. There exist a normalization of the p’s and a normalization of
the Haar measure of the isometry group of E™, as given by (3.5), (3.6), (3.7),
such that the ¢; ;. , »., in (1.2) are equal to 1.

Rephrased in terms of the “algebra” (which did not quite work out) the
theorem says:

Theorem Y. There exist a normalization of the y’s and a Haar measure
dg on the isometry group of E™, given by (3.5), (3.6), (3.7), so that the Chern
curvature polynomials defined by

(1.3) wX, ) = 32 p(X)2° (e even, 0 < e < dim X)
satisfy
(1.4) J#(Mp N gM?, Ddg = p(M?, DM, D) (mod AP+a-n+1) |

This version of the kinematic formula shows that the left-hand integral is to
some extent independent of », a fact which was not previously apparent.

Returning to the Weyl expression, we introduce a somewhat different nor-
malization (cf. (2.5))

(15) /:‘e(X) = @k—e—:l,ue(X)

and corresponding Weyl curvature polynomials
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(1.6) X, 2 = 3 pX)ae (eeven, 0 < e < dimX) .

Then we have
Theorem II. The Weyl curvature polynomials (1.6) satisfy

(1.7) 2X XY, = pX, DY, ),
(1.8) V(X)) = 7 Buv.(0)zX) ,

0<esk
¢ even

where B, (R) is the volume of the R-ball in E™, and k = dim X.
Note. The numerical coefficients here do not agree with those in (10) of
Chern [2]; an error must have slipped in somewhere. See § 4 for details.

2. Some of Chern’s formulas

Let X be a k-dimensional Riemann manifold. Then following Chern [2]
denote by ¢,, the Levi-Civita connection forms (1 < «, 8§ < k), alternating in
a and §, and by ¢, (1 < @ < k) an orthonormal coframe field. Thus

(2.1 do, = ; ©s N Ppa >
(2.2) do,; = Z Ous N\ 035 + Do
where

(2.3) D=3 Z., Sesrs; /N @5 -

The S,;,; are components of the curvature tensor, and have the usual proper-
ties with respect to the pairs of alternating subscripts («, 8) and (7, §). Define
for even e, 0 < e < k, the pointwise function on X :

(— 1)k — e)!

Q
Q.4 IO = .y

a " e . a
Z 5(51 [Be>5amzﬁlﬁz e Sﬂc—lﬂaﬁc—lie 2
10 Be

where §( ) is a generalized Kronecker delta equal to =1 as the 8’s are an
even or odd permutation of the «’s, and zero otherwise; summation is over
all &’s and #’s independently. The numerical factor which precedes } in (2.4)
was chosen so that I? = 1 when X is the unit sphere §* in E**'. (To effect
this normalization of Chern’s it is necessary to replace the factor 2%/ in his
(7) by 2°% as in our formula.) Following Chern we define the x’s (we add
superscript (1)) as volume integrals:

w000 = [ 19dv.
X
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With this normalization of the y’s, the ¢’s are obtained from Chern’s calcula-
tion, as follows (he wrote c; for our ¢; ; ,,,,,). Denote by @, the (m — I)-
dimensional volume of the unit (m — 1)-sphere in E™’s, so

(2.5) O = 2™/ (m]2) ,
and then
(2.6) Co_y = 072-1-1 cot 020?+q—n+3@q+2—i00+2-e+i be,p+q—n+1-i ,

0p+20p+10q+20f1 +10p+q-n+3—i@p+2-n+3—e+i

where the b’s are given through an expression denoted by B, which leads to
the formula (Chern’s (73) and an integral 13 lines below)

OmsOm (27
27n——e 2R
= be,m-e—l‘Rm“e_1 + -+ be,m—lRm_1 »
wherem=p+g—n+ 2.

([ + 1 + R2)5/2(4R2 _ tz)(m—e—m/zdz
2.7

At the end of the paper appears a formula (81)

j#é”(Mp N E?dVE:

(2.8)
0n+1 e @n—q-z-l @p+q—n+20p+q—n+1 01)4—2—3 #El)(Mp) ,

€
({)qa-l Tt (91 @p-!-q—n—"z—e @p+1@p+2

which refers to the case when gM¢< is replaced by the planes E? of dimension
g. Since E? is not compact, the integration is extended over the space of all
g-planes ; d"E? is an invariant measure on this space.

3. Calculation of the ¢’s

In his § 7 Chern gave a formula for the b’s, hence by implication, for the
¢’s; but the expression is in the form of a sum, which is hard to manipulate.
Instead, we aim for a product expression.

Lemma 1. Let e > 0be even and r > ¢ — 2. Denote by o, the coefficient
of xtin

1
(3.1) f (x* 4+ 2ux + D1 — w)7-o2dy;
-1
then
6 . .
(3.2) T Onsr = 00,305 00r Cire:0psa i

Opf1@p+20qf1(9 01 F3- eﬂ-an—s -1
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wherer = p + q — n.

Proof. Immediate from (2.6), (2.7), and the change of variable # = 2uR
in (2.7).

Lemma 2. Let «; be defined as in Lemma 1. Then a; = 0 for i odd, and
for i even

(3.3 a; = <e/2>m_+i .
l/2 (97+3(9'r-e+2

Proof. One can show that

e F<r+3>r<r—e+2>
(3.4 aizﬂ’}% .2 2 ; 5
_z_[,<r—z+3>[,<r—e+z+3>
2 2 2

then (3.3) follows by application of (2.5). Formula (3.4) is most easily derived
from properties of hypergeometric functions, as was shown by J. van Lint and
by J. Boersma. A less elegant method is obtained from

Jl (x* + 2ux + 1)*(1 — w)du
-1

- (- 1)[1 (* + 2ux + D1 — w)du
-1

= f @ + 2ux + 11 — w)s
s+ 10

by completing the started integration by parts and deducing a recurrence rela-
tion for «; = «;,,,,. Details on the three methods are found in [3].

Remark. The crucial part of (3.3) is the exact dependence of «; on »,
without which certain vital cancellations could not have taken place. This is
reflected in the wording of the problem in [3].

Proof. of Theorem I. The value of ¢, ; , ;.. is found from (3.2) and (3.3),
and can be written as

Cpoy -+ - (92< 0,10, (e/2)! )

Ci ; . — (97--6+2 5
4B <@p+1@p+2(i/2)! >< 9g:104.2/2)! )
@p—i+2 @q—j-i—Z

wherei + j = e, r = p + q — n. Note thatr = dim (M”? N gM?9). Hence the
¢’s become all equal to 1 if we change d‘Vg by a factor (¢,, --- @,)! and
choose p.(X) equal to @, _,.,/[0.\O..(e/2)!] times p’(X); in addition we
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may introduce a factor a*?, where a is any universal constant. In view of
(e/2)! = 27'*¢*/0,,, we choose a = 7, hence we define

0 Y
pd) = Freenlerz o) = [ Lav,
(3.5) 27r(9k+101\:+2 X

k=dmX, 0<e<k, eeven,

where

(3'6) le = "0e+2 (_1)6/228/2_17[_6/2 Z 6(“2 o ae)saxnzﬁxﬂz e Sae-—ueﬂc—lﬂc ’
kel B Be

(3.7) dg = (0, -+ 0)dVg .

This proves Theorem I. The re-normalization (3.5) also simplifies (2.8);
particularly if the measure on the space of g-planes is also re-normalized as

(3.8) ar? — (gqﬂ e 01 dVET

n+l T 0n—q+1

then the formula becomes
(3.9) j pMP () EDdE = p(M?), e<p+aq—n,
or

(3.10) f p(M? N E%,DdET = u(M?,7)  (mod A2+a-m+1) .

4. The Weyl formula

The volume of an R-ball in E™ is

B
B-m(R) = fo (Omrm‘ldr = gf’iR’”’- — (9m+2 R™ .

m 2z

The starting point of this section is (1.1), in which we assume the yx’s are
normalized as in (3.5), (3.6), i.e., by the property

(4.1) 2(S*R)) = Gr=esiles2 gi-e — Gennp  (R).
Tk 42 k+2

To find the numerical value of the y’s we calculate the volume of the p-tube
about S*(R) imbedded in E*. First n = k + 1:
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4.2)  BT*I(SHR)) = %«R + R — (R — o)) .

To calculate the volume for £ + 1 < n we use the following theorem which
is an obvious consequence of the possibility to build up p-tubes in product
situations from products of thin layers of the tubes around the factors.

Theorem IlI. Let X C E and Y C E™ be imbeddings, and X X Y C
E™*™ the corresponding imbedding of the product. Then

@.3) VT™X x V) = j AV(TOX) A dV(T(Y)) .

P12+ p22<p2
01,0220

In particular, if X and Y are points, we have

(4.4) Boom(R) = j dB,(0) A dBnlo)) ,

M2+ p22<o?
21,0220

or equivalently,

n=1, m-1 —_ @n+m+2 n+m
(4.5) Ig:f;;’;?“" oo, " dpdp, 2200,
Note. (4.5) is also easily derived analytically by changing variables: p, =
rcosd, p, = rsin g in the integral and evatuating.
Proof of Theorem II. By applying Theorem III to X = S*(R) C E**! and
Y a single point in E*~*~! we find

vaeE @) = | a s

o24pet<pt K
p1,0220

1 (R + p)"* — (R — p)*** NdB,_i_1(0)

- jwmcz (’;)Rk-epfdpl A dB,_ (o)

even
0<e<k

=20.. 5 (¥ )Rk-e@i-deml) A dBy_s (o)
c+1

4

k) 20, .
LYk g (0)RFE
0“1 E+ (P)

@6+1 @e+2@k-—e:—2

= Ze“ ( k )_za_kil__ '_zz%z—‘#e(sk(R))Bn_“e(p)
wk'e“#e(sk(R»Bn—k+e(p) .

In the last step we have used k! 0,.,0,,, = 27%**z¥*!, which is just the
doubling formula for the /"-function.
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Thus assuming Weyl’s basic form of (1.1) is correct we have verified (1.8),
and the general formula (1.7) follows easily from Theorem III. In fact, we
have

VT, "™ X Y)) =3 72X X V)Brim_p_q:(0)
V(T,(]:)(X)) = Z ‘az(X)Bn—p-)-z(p]) ’
VAPE) = 5 0, 0B g o) -

Now (4.3) relates the left sides, while (4.4) relates the right sides. It follows
that

X X V)= ¥ pXpY),

‘l':rj=€
which implies (1.7).
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